Remnants from a star that exploded thousands of years ago created a celestial abstract portrait, as captured in this NASA Hubble Space Telescope image of the Pencil Nebula.
Credit: NASA and The Hubble Heritage Team (STScI/AURA)
NGC 6334, Cat’s Paw
This image shows what it might look like standing on the surface of a planet orbiting a brown dwarf star. An alien moon can also be seen in the sky. The brown dwarf gives off such feeble visible light it is difficult to see any of the landscape except for the reflection in the water.
credit: Jeff Bryant
Remnants from a star that exploded thousands of years ago created a celestial abstract portrait, as captured in this NASA Hubble Space Telescope image of the Pencil Nebula.
Credit: NASA and The Hubble Heritage Team (STScI/AURA)
Messier 51, Whirlpool in the Cosmos
The veil nebula is 110 light-years across, covering six full moons in the sky, seen from Earth, and resides about 2,100 light-years away in the constellation Cygnus the Swan.
Image credit: NASA, ESA & Hubble
Orionids Meteors Over Wulan Hada Volcano
“Brown dwarf collisions. Want to make a star, but you didn’t accumulate enough mass to get there when the gas cloud that created you first collapsed? There’s a second chance available to you! Brown dwarfs are like very massive gas giants, more than a dozen times as massive as Jupiter, that experience strong enough temperatures (about 1,000,000 K) and pressures at their centers to ignite deuterium fusion, but not hydrogen fusion. They produce their own light, they remain relatively cool, and they aren’t quite true stars. Ranging in mass from about 1% to 7.5% of the Sun’s mass, they are the failed stars of the Universe.
But if you have two in a binary system, or two in disparate systems that collide by chance, all of that can change in a flash.”
Nothing in the Universe exists in total isolation. Planets and stars all have a common origin inside of star clusters; galaxies clump and cluster together and are the homes for the smaller masses in the Universe. In an environment such as this, collisions between objects are all but inevitable. We think of space as being extremely sparse, but gravity is always attractive and the Universe sticks around for a long time. Eventually, collisions will occur between planets, stars, stellar remnants, and black holes.
What happens when they run into one another? Unbelievably, we not only know, we have the evidence to back it up!
Seven Worlds for TRAPPIST 1 : Seven worlds orbit the ultracool dwarf star TRAPPIST-1, a mere 40 light-years away. In May 2016 astronomers using the Transiting Planets and Planetesimals Small Telescope announced the discovery of three planets in the TRAPPIST-1 system. Just announced, additional confirmations and discoveries by the Spitzer Space Telescope and supporting ESO ground-based telescopes have increased the number of known planets to seven. The TRAPPIST-1 planets are likely all rocky and similar in size to Earth, the largest treasure trove of terrestrial planets ever detected around a single star. Because they orbit very close to their faint, tiny star they could also have regions where surface temperatures allow for the presence of liquid water, a key ingredient for life. Their tantalizing proximity to Earth makes them prime candidates for future telescopic explorations of the atmospheres of potentially habitable planets. All seven worlds appear in this artists illustration, an imagined view from a fictionally powerful telescope near planet Earth. Planet sizes and relative positions are drawn to scale for the Spitzer observations. The systems inner planets are transiting their dim, red, nearly Jupiter-sized parent star. via NASA
js
a collection of all cosmic ephemeralities and phenomenons. a blog dedicated to exploring the vastness of the universe
66 posts