“Brown dwarf collisions. Want to make a star, but you didn’t accumulate enough mass to get there when the gas cloud that created you first collapsed? There’s a second chance available to you! Brown dwarfs are like very massive gas giants, more than a dozen times as massive as Jupiter, that experience strong enough temperatures (about 1,000,000 K) and pressures at their centers to ignite deuterium fusion, but not hydrogen fusion. They produce their own light, they remain relatively cool, and they aren’t quite true stars. Ranging in mass from about 1% to 7.5% of the Sun’s mass, they are the failed stars of the Universe.
But if you have two in a binary system, or two in disparate systems that collide by chance, all of that can change in a flash.”
Nothing in the Universe exists in total isolation. Planets and stars all have a common origin inside of star clusters; galaxies clump and cluster together and are the homes for the smaller masses in the Universe. In an environment such as this, collisions between objects are all but inevitable. We think of space as being extremely sparse, but gravity is always attractive and the Universe sticks around for a long time. Eventually, collisions will occur between planets, stars, stellar remnants, and black holes.
What happens when they run into one another? Unbelievably, we not only know, we have the evidence to back it up!
Orionids Meteors Over Wulan Hada Volcano
A View Toward M106
Planetary Nebula M2-9 // Butterfly Nebula
Sharpless 273, Fox Fur Nebula
M16, The Eagle
Picture of NGC 7635 captured in narrowband by amateur astronomer Luca Moretti
a collection of all cosmic ephemeralities and phenomenons. a blog dedicated to exploring the vastness of the universe
66 posts