Rotate
Stunning, trippy 1970s NASA concept art for future space colony designs. Available (plus many more) in super hi-res here (and copyright free), for all your desktop wallpaper and/or prog-rock album cover needs. (via io9)
Happy Earth Day
The Poles of Mars.
L: The North Pole, pictured down to the equator R: The South Pole, in more detail
Credit: ESA
Enceladus, moon of Saturn, observed by the Cassini space probe on December 19, 2015. (NASA)
The planet Uranus. Taken on November 14th 2009 at 3:52 am. Using the 98 in Hooker telescope.
The Moon is about 40 to 140 million years younger than the Earth and its geology offers broad hints that it was formed in an impact. This is called the giant impact hypothesis.
Nobody can be sure what actually happened, but computer simulations provide some clues. In one simulation, the newly-formed Earth suffers an impact with another planet (called Theia, a little larger than Mars). Theia is torn apart, its core dragged down through Earth’s interior to merge with the Earth’s core. Much of Theia’s mantle is absorbed into Earth’s mantle, and the side of Theia furthest away from the impact is hurled into space. About half the material ejected by the collision is lost and the rest accretes to form the Moon.
The Earth’s axis is tilted, and it is left spinning faster than it does today. A day lasts about ten hours. Months are much shorter too, as the new Moon orbits the Earth much faster. It is also much closer. Had there been anyone on Earth to observe it, they would have glimpsed a Moon twice the present size in the Earth’s primitive sky.
The Moon has since slowed the Earth’s spin, and it is moving away from us at a rate of almost 4 centimetres a year.
You can learn more about the birth of our Moon via Origins: The Scientific Story of Creation by Jim Baggott, or by following #BaggottOrigins across social media.
Image: Moon, by Yutaka Tsutano. CC-BY-2.0 via Flickr.
NASA concept art from the Apollo era.
The latest video from Kurzgesagt is a short primer on neutron stars, the densest large objects in the universe.
The mind-boggling density of neutron stars is their most well-known attribute: the mass of all living humans would fit into a volume the size of a sugar cube at the same density. But I learned about a couple of new things that I’d like to highlight. The first is nuclear pasta, which might be the strongest material in the universe.
Astrophysicists have theorized that as a neutron star settles into its new configuration, densely packed neutrons are pushed and pulled in different ways, resulting in formation of various shapes below the surface. Many of the theorized shapes take on the names of pasta, because of the similarities. Some have been named gnocchi, for example, others spaghetti or lasagna.
Simulations have demonstrated that nuclear pasta might be some 10 billion times stronger than steel.
The second thing deals with neutron star mergers. When two neutron stars merge, they explode in a shower of matter that’s flung across space. Recent research suggests that many of the heavy elements present in the universe could be formed in these mergers.
But how elements heavier than iron, such as gold and uranium, were created has long been uncertain. Previous research suggested a key clue: For atoms to grow to massive sizes, they needed to quickly absorb neutrons. Such rapid neutron capture, known as the “r-process” for short, only happens in nature in extreme environments where atoms are bombarded by large numbers of neutrons.
If this pans out, it means that the Earth’s platinum, uranium, lead, and tin may have originated in exploding neutron stars. Neat!