In a 45-minute video called Riding Light, Alphonse Swinehart animates the journey outward from the Sun to Jupiter from the perspective of a photon of light. The video underscores just how slow light is in comparison to the vast distances it has to cover, even within our own solar system. Light takes 8.5 minutes to travel from the Sun to the Earth, almost 45 minutes to Jupiter, more than 4 years to the nearest star, 100,000 years to the center of our galaxy, 2.5 million years to the nearest large galaxy (Andromeda), and 32 billion years to reach the most remote galaxy ever observed.1 The music is by Steve Reich (Music for 18 Musicians), whose music can also seem sort of endless.
If you’re impatient, you can watch this 3-minute version, sped up by 15 times:
This isn’t strictly true. As I understand it, a photon that just left the Sun will never reach that most remote galaxy.↩
Sirens of Titan
Using the Dark Energy Camera at the Cerro Tololo observatory in Chile, astronomers took an image of the stars clustered around the center of our Milky Way galaxy that shows about 10 million stars. Check out the zoomable version for the full experience.
Looking at an image like this is always a bit of a brain-bender because a) 10 million is a huge number and b) the stars are so tightly packed into that image and yet c) that image shows just one tiny bit of our galactic center, d) our entire galaxy contains so many more stars than this (100-400 billion), and e) the Universe perhaps contains as many as 2 trillion galaxies. And if I’m remembering my college math correctly, 400 billion × 2 trillion = a metric crapload of stars. (via bad astronomy)
#Fitness is critical in space! Watch this #SpeedyTime video as I transform the multi-modal ARED machine during my workout. The Advanced Resistive Exercise Device (ARED), simulates free-weight exercises in normal gravity. In space we exercise 2 hours every day in order to maintain our muscle and bone mass. Our favorite part about exercising in space is of course, the view!
To learn more about the ARED, please visit https://www.nasa.gov/mission_pages/station/research/experiments/1001.html
The latest video from Kurzgesagt is a short primer on neutron stars, the densest large objects in the universe.
The mind-boggling density of neutron stars is their most well-known attribute: the mass of all living humans would fit into a volume the size of a sugar cube at the same density. But I learned about a couple of new things that I’d like to highlight. The first is nuclear pasta, which might be the strongest material in the universe.
Astrophysicists have theorized that as a neutron star settles into its new configuration, densely packed neutrons are pushed and pulled in different ways, resulting in formation of various shapes below the surface. Many of the theorized shapes take on the names of pasta, because of the similarities. Some have been named gnocchi, for example, others spaghetti or lasagna.
Simulations have demonstrated that nuclear pasta might be some 10 billion times stronger than steel.
The second thing deals with neutron star mergers. When two neutron stars merge, they explode in a shower of matter that’s flung across space. Recent research suggests that many of the heavy elements present in the universe could be formed in these mergers.
But how elements heavier than iron, such as gold and uranium, were created has long been uncertain. Previous research suggested a key clue: For atoms to grow to massive sizes, they needed to quickly absorb neutrons. Such rapid neutron capture, known as the “r-process” for short, only happens in nature in extreme environments where atoms are bombarded by large numbers of neutrons.
If this pans out, it means that the Earth’s platinum, uranium, lead, and tin may have originated in exploding neutron stars. Neat!
A solar eclipse (left) happens when the moon gets in the way of the sun’s light and casts its shadow on Earth. During a lunar eclipse (right), Earth gets in the way of the sun’s light hitting the moon.
Spanning from comets in the south to the termination shock zone in the northern part of the country, The Sweden Solar System is a scale model of the solar system that spans the entire country of Sweden, the largest such model in the world.
The Sun is represented by the Ericsson Globe in Stockholm, the largest hemispherical building in the world. The inner planets can also be found in Stockholm but the outer planets are situated northward in other cities along the Baltic Sea.
The Poles of Mars.
L: The North Pole, pictured down to the equator R: The South Pole, in more detail
Credit: ESA
theconstantbuzz:
Father and son oberve Apollo 11 Launch © Ralph Crane
Flying 250 miles above the Earth aboard the International Space Station has given me the unique vantage point from which to view our planet. Spending a year in space has given me the unique opportunity to see a wide range of spectacular storm systems in space and on Earth.
The recent blizzard was remarkably visible from space. I took several photos of the first big storm system on Earth of year 2016 as it moved across the East Coast, Chicago and Washington D.C. Since my time here on the space station began in March 2015, I’ve been able to capture an array of storms on Earth and in space, ranging from hurricanes and dust storms to solar storms and most recently a rare thunder snowstorm.
Blizzard 2016
Hurricane Patricia 2015
Hurricane Joaquin 2015
Dust Storm in the Red Sea 2015
Dust Storm of Gobi Desert 2015
Aurora Solar Storm 2015
Aurora Solar Storm 2016
Thunderstorm over Italy 2015
Lightning and Aurora 2016
Rare Thunder Snowstorm 2016
Follow my Year In Space on Twitter, Facebook and Instagram.