Buster, sole Atheist among #Pugs , demolishes Ken Ham!
3 tube (41, 42 & 25) regenerative built inside a case I found at Walgreens. Coils for multi bands. Works great, quite sensitive, but the vents aren't cutting it. Going to need a cooling fan. Listening to BBC at the moment.
I was fortunate enough to see the full-size model of this craft at @nasagoddard and was given a description & full explanation of the ambitious mission. Thanks, NASA Social!
As part of our Asteroid Redirect Mission (ARM), we plan to send a robotic spacecraft to an asteroid tens of millions of miles away from Earth, capture a multi-ton boulder and bring it to an orbit near the moon for future crew exploration.
This mission to visit a large near-Earth asteroid is part of our plan to advance the new technologies and spaceflight experience needed for a human mission to the Martian system in the 2030s.
The robotic spacecraft, powered by the most advanced solar electric propulsion system, will travel for about 18 months to the target asteroid.
After the spacecraft arrives and the multi-ton boulder is collected from the surface, the spacecraft will hover near the asteroid to create a gravitational attraction that will slightly change the asteroid’s trajectory.
After the deflection is verified, the robotic vehicle will deliver the boulder into a stable orbit near the moon. During the transit, the boulder will be further imaged and studied by the spacecraft.
Astronauts aboard the Orion spacecraft will launch on the Space Launch System rocket to explore the returned boulder.
Orion will dock with the robotic vehicle that still has the boulder in its grasp.
While docked, two crew members on spacewalks will explore the boulder and collect samples to bring back to Earth for further study.
The astronauts and collected samples will return to Earth in the Orion spacecraft.
This mission will demonstrate future Mars-level exploration missions closer to home and will fly a mission with technologies and real life operational constraints that we’ll encounter on the way to the Red Planet. A few of the capabilities it will help us test include:
Solar Electric Propulsion – Using advanced Solar Electric Propulsion (SEP) technologies is an important part of future missions to send larger payloads into deep space and to the Mars system. Unlike chemical propulsion, which uses combustion and a nozzle to generate thrust, SEP uses electricity from solar arrays to create electromagnetic fields to accelerate and expel charged atoms (ions) to create a very low thrust with a very efficient use of propellant.
Trajectory and Navigation – When we move the massive asteroid boulder using low-thrust propulsion and leveraging the gravity fields of Earth and the moon, we’ll validate critical technologies for the future Mars missions.
Advances in Spacesuits – Spacesuits designed to operate in deep space and for the Mars surface will require upgrades to the portable life support system (PLSS). We are working on advanced PLSS that will protect astronauts on Mars or in deep space by improving carbon dioxide removal, humidity control and oxygen regulation. We are also improving mobility by evaluating advances in gloves to improve thermal capacity and dexterity.
Sample Collection and Containment Techniques – This experience will help us prepare to return samples from Mars through the development of new techniques for safe sample collection and containment. These techniques will ensure that humans do not contaminate the samples with microbes from Earth, while protecting our planet from any potential hazards in the samples that are returned.
Rendezvous and Docking Capabilities – Future human missions to Mars will require new capabilities to rendezvous and dock spacecraft in deep space. We will advance the current system we’ve developed with the international partners aboard the International Space Station.
Moving from spaceflight a couple hundred miles off Earth to the proving ground environment (40,000 miles beyond the moon) will allow us to start accumulating experience farther than humans have ever traveled in space.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
1. NASA-Funded Research
It’s all just a click way with the launch of a new public access site, which reflects our ongoing commitment to provide public access to science data.
Start Exploring!
2. Red Planet Reconnaissance
One of the top places in our solar system to look for signs of past or current life is Mars. Through our robotic missions, we have been on and around Mars for 40 years. These orbiters, landers and rovers are paving the way for human exploration.
Meet the Mars robots
3. Three Moons and a Planet that Could Have Alien Life
In a presentation at TED Talks Live, our director of planetary science, Jim Green, discusses the best places to look for alien life in our solar system.
Watch the talk
4. Setting Free a Dragon
Tune in to NASA TV on Friday, Aug. 26 at 5:45 a.m. EDT for coverage of the release of the SpaceX Dragon CRS-9 cargo ship from the International Space Station.
Watch live
5. Anniversary Ring(s)
Aug. 26 marks 35 years since Voyager probe flew by Saturn, delighting scientists with rich data and images. Today, thanks to our Cassini spacecraft, we know much more about the ringed planet.
Learn more about Cassini’s mission to Saturn
Learn more about Voyager 2
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
I got bored and went digging through the box of tubes again... Found a nice looking 6F6 GT and a 6Y6 GT, and kind of ran off in high spirits and decided a little broadcast band receiver would be a fun project. For this project I wanted them outside the box (CD case) where I could see 'em. Mounted all the heavy components. (back-to-back Radio Shack 12V CT transformers to make what amounts to an isolation transformer, picking off filament power between the two... Audio output transformer...) I haven't even decided if it's going to be a regenerative or something that requires less fussing with during operation. Any suggestions, anyone?
Buster, sole Atheist among #Pugs , returns to point out Ken Ham's backpedalling
SDHoS would like to thank Austin James for bringing this to our attention.
Iridology (also known as iridodiagnosis or iridiagnosis) is an alternative medicine technique whose proponents claim that patterns, colors, and other characteristics of the iris can be examined to determine information about a patient’s systemic health.
Origins
Proponents of iridology attribute its development to Ignatz…
View On WordPress
Buster the Atheist Pug returns to demolish a creationist's 'testimony'
Videos recorded live #ReasonRally in Washington DC are being processed and uploaded as quickly as possible. Subscribe to be alerted to new uploads!
Eric Hovind 5 Part IV: Abstract Thinking In this video, we analyze Eric's thoughtful equation 'Confusion, Confusion, Confusion, THEREFORE God'
Exposing the misinformation of science-deniers, moon-hoaxers, flat-earthers and the rest of the tinfoil hat wearing crowd at www.sciencedenierhallofshame.com
99 posts