The galaxy is wild. Our solar system, with its surprising abundance of living creatures and nonstop radiation and asteroid showers, is a placid, private garden compared to the rest of it.
In particular, there are perhaps trillions of rogue planets (planetary bodies ranging from little rocky Earth-sized guys to super-Jupiter gas giants) in the Milky Way, including a surprisingly large fleet of the things right near the galactic core.
This is unusual, since the typical way we detect exoplanets is by marking their repeated procession across a star. But rogue planets, by definition, don’t orbit stars. So the way astronomers find them is a little different, requiring use of gravitational microlensing.
Gizmodo breaks it down:
Data gathered by NASA’s now-retired Kepler Space Telescope has revealed a small population of free-floating planets near the Galactic Bulge. The new finding raises hope that a pair of upcoming missions will result in further detections of unbound planets, which drift through space separated from their home stars….
It’s impossible to know what the conditions are like on these presumed rogue exoplanets, but [astronomer Iain] McDonald said they could be “cold, icy wastelands,” and, if similar in size to Earth, their surfaces would “closely resemble bodies in the outer Solar System, like Pluto.”
The new paper suggests the presence of a large population of Earth-sized rogue planets in the Milky Way. It’s becoming clear that free-floating planets are common. McDonald said his team is currently working to come up with a more precise estimate for how many of them might exist.
Did you catch that part about how McDonald’s team made this discovery using a now-retired telescope? Yeah. Apparently the new telescope projects coming online are both more powerful and (in particular) better equipped to detect gravitational lensing effects, and therefore more likely to detect rogue planets in the future.
Photos of our own planet Earth taken by the Cassini spacecraft while it was orbiting Saturn, on 19 July 2013 and 12 April 2017, respectively.
Europe - André Kuipers
I - ISS Over Europe
II - Wolgograd
III - London
IV - Amsterdam
V - Naples
VI - Paris
(Original Photo credit to NASA)
Earth and Moon
Three moons of Jupiter : Ganymede, Callisto and Io. Credits : NASA/JPL.
Space Shuttle Endeavour mounted atop one of NASA’s modified Boeing 747 Shuttle Carrier Aircraft.
In a 45-minute video called Riding Light, Alphonse Swinehart animates the journey outward from the Sun to Jupiter from the perspective of a photon of light. The video underscores just how slow light is in comparison to the vast distances it has to cover, even within our own solar system. Light takes 8.5 minutes to travel from the Sun to the Earth, almost 45 minutes to Jupiter, more than 4 years to the nearest star, 100,000 years to the center of our galaxy, 2.5 million years to the nearest large galaxy (Andromeda), and 32 billion years to reach the most remote galaxy ever observed.1 The music is by Steve Reich (Music for 18 Musicians), whose music can also seem sort of endless.
If you’re impatient, you can watch this 3-minute version, sped up by 15 times:
This isn’t strictly true. As I understand it, a photon that just left the Sun will never reach that most remote galaxy.↩
The South Pole, Jupiter
For his Earth Restored project, Toby Ord digitally remastered 50 photographs of the whole Earth taken by Apollo astronauts during their missions in the 60s and 70s.
The Apollo photographs are historic works of art. So in restoring them, I sought to bring out their own beauty. I refrained from recomposing the images by cropping, or trying to leave my own mark or interpretation. Perhaps in some cases this would make a more pleasing image, but it was not my aim.
And the Apollo photographs are also a scientific record of what our Earth looks like. In particular, what it would have looked like from the perspective of the astronaut taking the shot. So rather than pumping the saturation or adjusting the colours to what we think the Earth looks like, I wanted to allow us to learn from these photographs something about how it actually appears.
Many of these shots are new to me – the Apollo program and its scientific and cultural output continue to be revelatory 50 years later. (My only quibble here: the images on the website are not high-res. Would love to see much bigger versions of these.)